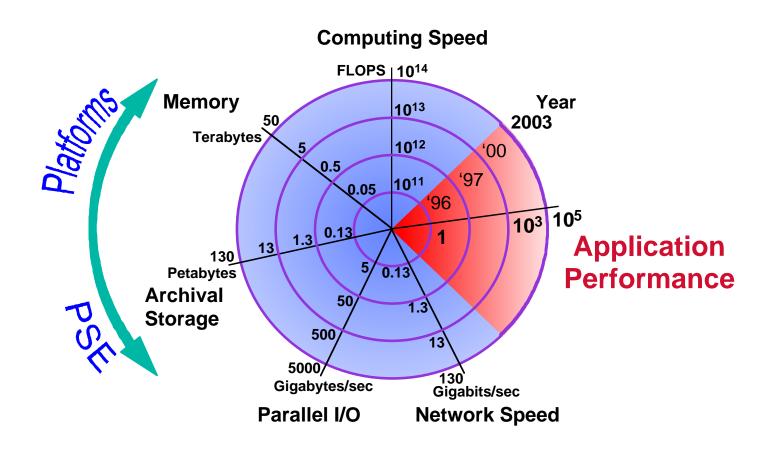
ASCI Academia Strategic Alliances Program


Research Interests in Computer Systems and Computational and Computer Science Infrastructure

Presented at Pre-Proposal Conference December 5, 1996

By
Dona Crawford
Director, Distributed Information Systems
Sandia National Laboratories

ASCI success requires balanced growth of simulation components driven by the need for improved application performance

Our Applications Require Balanced Systems (Scale by 10⁵)

For every 1 GigaFLOP peak performance, we need:

- 1 Gigabyte memory size
- 50 Gigabyte disk storage
- 10 Terabytes archival storage
- 16 Gigabyte per second cache bandwidth
- 3 Gigabyte per second memory bandwidth
- 0.1 Gigabyte per second I/O bandwidth
- 0.01 Gigabyte per second disk bandwidth.
- 1 Megabyte/second archival storage bandwidth

Capacity and Performance

Balance or Bottleneck

Processors	Kiloflops	Megaflops	Gigaflops	Teraflops
Archive	Megabyte	Gigabyte	Terabyte	Petabyte
Network /sec	Kilobit	Megabit	Gigabit	Terabit
Memory Size	Kilobyte	Megabyte	Gigabyte	Terabyte
Calculations	1-D	2-D	3-D	Multi- Dimensions
	1970's	1980's	1990's	Year 2000

ASCI Hardware Requirements and Technology Trends

Level	Effective Latency (CPU cycles)	Bandwidth (Random read/write)	Size		Primary investment priority	
On-chip cache**, L1	2-3	16-32 B/cycle	10 ⁻⁴ B/flop *		Secondary	
Off-chip cache**, L2 (SRAM)	5-6	16 B/cycle	10 ⁻² B/flop *		investment priority	
Local main memory (DRAM)	30-80 (15-30)	2-8 B/flop pk (2-8 B/flop sustained)	1 B/flop	Compute engine	1996-1998 Situation	
"nearby nodes"	300-500 ₁ (30-50)	1-8 B/flop (8 B/flop)	1 B/flop ●	Interconnect	(1998-2000 Requirements	
"far away nodes"	1000 (100-200)	1 B/flop (1 B/flop)	1 B/flop ●		Industry Trend	
I/O (memory disk)	10 ms	0.01-0.1 B/flop	10-100 B/flop ●		Industry gets better at meeting	
Archive (disk-tape)	Seconds	10 ⁻⁴ B/flop (0.001-0.01 B/flop)	10 ² B/flop 10 ⁴ B/flop		requirements Industry gets	
User access	1/10 s (1/60 s)	OC3/desktop (OC12-48 /desktop)	100 users		worse at meeting requirements	
Multiple sites	1/10 s	•	•		Industry continues	
to meet required. ** Cacheless systems with equivalent performance are fully acceptable.						

ASCI Software Requirements and Technology Trends

	Security	Scalability	Functionality & Performance	Portability	
Human/Computer Interface Visualization Internet technology	Δ	♦ Δ	Visualization \bigwedge	A •	
Application Environment — mathematical algorithms — mesh generation — domain decomposition — scientific data management	4 •	♦ Δ	↓ Δ	$\blacktriangle \Delta$	Industry meeting requirement Shdustry not meeting requirement s Requirements stay the same Requirements increase
Programming Environment — programming model — libraries — compilers — debuggers — performance tools — object technologies	↓ ∆	♦ Δ	↓ Δ	↓ ∆	
Distributed Operating software — I/O — file systems — storage systems — reliability — network, comm systems — systems admin — distributed resource mgmt	♦ Δ	♦ Δ	♦ Δ	↓ ∆	Primary investment priority Secondary investment priority
Diagnostics performance Monitors — systems health — state	A •	↓ ∆	A •	V •	

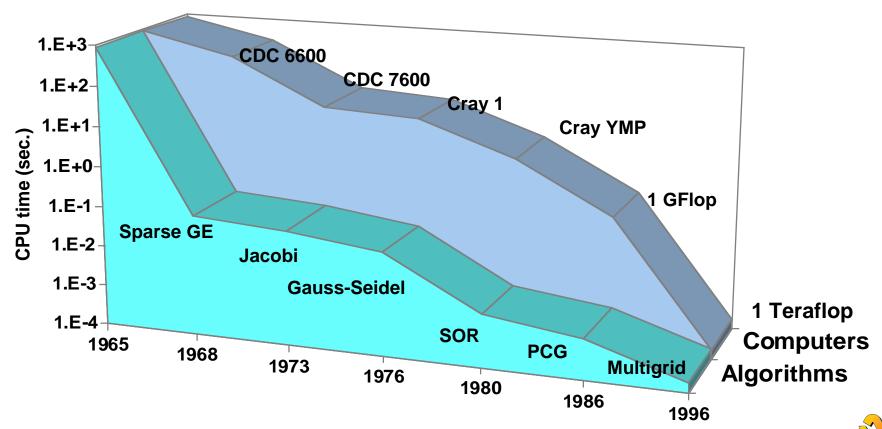
Example Hardware and Architecture Research Areas

- High Speed Interconnects
 - Order 10000 + cpu required
 - Congestion and bandwidth will likely cause current technology not to scale to this size
 - Create the illusion of shared memory
- WAN/LAN High Speed Networking
 - Gbs WANs/Tbs LANs
 - High Speed Encryption

Example Hardware Research Areas

- Storage Technology
 - Exabyte quantities of data will be stored
 - 100's of Gbs bandwidth to storage
 - Scalable network attached peripherals
 - RAIDs/RAITs
 - New Storage Technologies

Visualization


- Scalable parallel visualization methods for terascale datasets
- Hierarchical methods for representation and visualization techniques
- Data-mining techniques for feature localization within the terascale data sets
- Immersive visualization augmented by quantitative analysis capability
- Integration with data archiving, retrieval, and analysis systems

- Computational Mathematics and Algorithms
 - Problem and Mesh Generation; Domain Decomposition
 - Scalable numerical methods and code frameworks are needed to enable terascale scientific simulations
 - Preconditioned iterative methods for sparse linear systems of equations
 - Methods for large systems of nonlinear equations
 - Methods for time-dependent differential equations, including ODEs, PDEs, and DAEs
 - Parallel adaptive mesh refinement libraries
 - Flexible frameworks for building codes
 - Application-aware communication routines and object classes

New algorithms have yielded greater reductions in solution time than hardware improvements

Gaussian Elimination/CDC 3600

- Programing Models/Compilers and Debuggers
 - Message passing (MPI) everywhere
 - Standard language extensions or compiler directives for shared memory parallelism, message passing for distributed,
 - Explicit threads for shared, message passing for distributed,
 - High level language constructs (HPF, HPC++, etc.)
 - Multilevel memory model

High level programming models and abstractions are required that facilitate code reuse, reduce code complexity, and abstract away low level details necessary to achieve performance on a particular architecture.

- Development Tools that scale to thousands of processes
 - Scalable parallel debuggers
 - Static analyzers
 - CASE tools
 - Verification and validation of the simulation results
 - Tools that work in a distributed environment
 - Tools to evaluate the performance and scalability

Performance measurement, debugging, quality control, verification, and validation of codes becomes increasingly difficult as code size and complexity increases.

- Distributed Scalable Operating Systems Software
 - Scalable, transparent parallel I/O (end-end: applications to tertiary storage)
 - Distributed file systems; archival storage systems
 - Operating systems will have to control single machine usage and parallel usage spread over many machines and across sites
 - Mechanisms for efficient thread creation, scheduling, and destruction (millions of threads)
 - Support the transparent creation, use, and maintenance of distributed applications in a heterogeneous computing environment

Research is needed on both operating and programming system environments that provide services and tools to support the transparent creation, use, and maintenance of distributed applications in a heterogeneous computing environment.

Integration, Integration, Integration

 It is expected that proposals will be developed that address the full range of tera-scale computing issues (Physical Science, Computational Science, Computer Science)

